

Sequencing: *From plasmids to genomes*

Roger Bialy, PhD – Regional Sequencing Specialist London Regional Genomics Centre, Western University March 1st, 2024

01

Introduction to Nanopore

Scientific publications demonstrate broad uses of nanopore sequencing

In foundational research: human genetics, cancer, plant, animal, infectious disease, environmental genomics

3

Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

Delivering the widest range of biological analysis techniques

In the field, in research laboratories and in high throughput service environments

Find out more: nanoporetech.com/applications

© 2023 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

4

Nanopore sequencing: how it works

An adapted DNA strand is passed through a nanopore, an electrical signal is interpreted into sequence data

The benefits of PCR-free sequencing

Methylation included

One core technology at any scale

Technoloaies

mitigate, cure, or prevent any disease or condition.

02

Technology Update

Secondary data analysis

Available now

"Open-source" analysis pipelines become packaged for ease of use

Sharable reports Standard output files

-ru-rr	prom	prom		Dec	86:24	demo.fasta.fai
drwxrwxr-x	prom	prom	4096	Dec	86:24	
-rw-rr	prom	prom	65364910	Dec	06:24	demo.fasta
-ru-rr	prom	prom		Dec	06:24	jbrowse.json
-ru-rr	prom	prom	91008	Dec	86:26	SAMPLE.mosdepth.global.dist.tx
-rw-rr	prom	prom		Dec	86:26	
-rw-rr	prom	prom		Dec	06:26	
-rw-rr	prom	prom	26895569	Dec	06:26	
-ru-rr	prom	prom	8721425	Dec	86:26	
-rw-rr	prom	prom	16118014	Dec	86:26	
-rw-rr	prom	prom	747867	Dec	06:27	
-rw-rr	prom	prom	3581604	Dec	06:27	SAMPLE.wf-human-sv-report.html
-rw-rr	prom	prom	6642	Dec	06:27	SAMPLE.wf_sv.vcf.gz.tbi
-rw-rr	prom	prom	35464	Dec	06:31	SAMPLE.wf_snp.vcf.gz.tbi
-rw-rr	prom	prom	2032540	Dec	06:31	
-rw-rr	prom	prom	3547308	Dec	06:32	SAMPLE.wf-human-snp-report.htm
drwxrwxr-x	prom	prom		Dec	07:44	

Command-line access Easy integration

© 2023 Oxford Nanopore Technologies plc Oxford Nanopore Technologies products are not intended for use for health assessment of to diagnose, treat, mitigate, cure, or prevent any disease or condition.

End-to-end workflows for SynBio and Amplicons

Delivering more complete, information rich answers

*GATAGCCTGAATGCGC*TAGAGC

Plasmid

- Entire plasmid sequencing to verify mutations free status
- Resolves repetitive regions
- No primers required
- Sample to answer from 5 h
- Rapid Barcoding Kit based enabling 96 samples per run
- Affordable to set up, highly competitive to run
- EPI2ME *wf-clone-validation* workflow available

AAV

- Entire recombinant adenoassociated virus (rAAV) vectors sequencing, spanning ITR-ITR
- Identification of transgene & promoters of interest, truncated rAAV genomes or contamination
- Sample to answer from 6 h
- Native Barcoding Kit based enabling 96 samples per run
- Affordable to set up, highly competitive to run
- EPI2ME *wf-aav-qc* workflow available

Amplicons

- de novo amplicon consensus sequence generation (500 – 5,000 bp long)
- Resolves repetitive regions
- No primers required
- Sample to answer from 3 h
- Rapid Barcoding Kit based enabling 96 samples per run
- Affordable to set up, highly competitive to run
- EPI2ME *wf-amplicon* workflow available

© 2023 Oxford Nanopore Technologies plc Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

End-to-end workflows for small genomes

Delivering more complete, information rich answers

SARS-CoV-2, Flu RSV coming soon

- Full sample-to-answer workflow
- PCR tiling approaches to sequence whole genome
- Tracking outbreaks, variants of concern
- EPI2ME *wf-artic*, *wf-flu* workflows available
- Up to 96 samples per run
- Rapid sample-to-answer workflows
- Affordable to set up, highly competitive to run

Bacterial assembly

- Isolate or metagenomic assembly workflows
- Alignment to reference or assembly
- Consensus annotation +
 resistance genes
- EPI2ME *wf-bacterial-genomes* workflow available
- Rapid sample-to-answer workflows
- Affordable to set up, highly competitive to run

Metagenomics

- Amplicon-targeted or shotgun metagenomic samples sequencing and basecalling
- Real-time classification
- Improved classification with long read context
- EPI2ME *wf-metagenomics* workflow available
- Up to 96 samples per run
- Rapid sample-to-answer workflows
- Affordable to set up, highly competitive to run

Available now / Coming soon

© 2023 Oxford Nanopore Technologies plc Oxford Nanopore Technologies products are not intended for use for health assessment of to diagnose, treat, mitigate, cure, or prevent any disease or condition.

End-to-end workflows for human applications

Delivering more complete, information rich answers

Human variation workflow

- All variation captured inc. SNV, SV, CNVs, repeat expansions and methylation
- Protocols for 10kb or 30kb read N50s for various sample input
- Extraction from cells or blood supported. Saliva, swabs *in development*
- Integration to interpretation providers
- EPI2ME wf-human-variation workflow

Oxford Nanopore Technologies products are not intended for use for to diagnose, treat, mitigate, cure, or prevent any disease or condition

© 2023 Oxford Nanopore Technologies pla

TeloSeq

- Sequencing from double-stranded telomeric ends of chromosomes, through the sub-telomeric regions
- >100-fold enrichment of telomeric regions
- Enabled telomere length measurement and chromosome arm resolution
- Full lab workflow with assisted informatics in GitHub
- EPI2ME workflow in development

Tumour /Tumour normal Coming soon

- Paired tumor-normal WGS for deeper understanding of genomic and epigenomic variability in cancer
- Improved tumor type classification and identification of key mutations driving cancer progression
- All methylation markers retained alongside SNVs, SVs, CNVs
- EPI2ME workflow *wf-somatic*variation available
- EPI2ME workflow tumour/tumour normal in development

Available now

High accuracy throughout all investigation types

Accuracy measurement adjusted to the specific experiment

visit nanoporetech.com/accuracy

13

© 2023 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

DNA modifications: what's available now?

Single molecule, native modifications

Modifications are a built-in feature of nanopore signals

Super-accurate basecalling Start <

Open source offering in GitHub – available now

- All context 5mC
- All context 6mA
- Post-run via Dorado

dorado basecaller

- dna_r10.4.1_e8.2_400bps_sup@v4.2.0 \ pod5s/ \
- --modified-bases 5mC,6mA \
- > basecalls.bam

© 2023 Oxford Nanopore Technologies plc.

14 Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

Oxford Nanopore provides superior methylation detection compared to other methods

Nanopore sequencing detects significantly more CpGs vs EPIC arrays and bisulphite WGS, with high data correlation

% detected CpGs in human genome (GRCh38)

Compared to bisulfite whole genome seq

- Higher number of CpGs called
- High correlation to whole genome bisulfite sequencing: 0.98
- Single-read, single-site accuracy ~99%

© 2023 Oxford Nanopore Technologies plc.

15 Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

EPIC arrays cover only ~3% of all CpGs in the human genome

Oxford Nanopore WGS covers more than 97%

03

Applications: Microbial and Infectious Disease

Plasmid sequencing

Plasmids are the backbone of molecular biology

RE

Why implement a new plasmid sequencing workflow?

© 2024 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

Case study: highly accurate, cost-effective nanopore-based plasmid sequencing

Generating complete maps of synthetic DNA constructs within 24 hours at a competitive cost

Robust, full-length, accurate and contiguous plasmid assemblies

 \bigcirc

Scales to large sample numbers at lower cost than Sanger sequencing

Nanopore sequencing works across wide range of plasmid sizes and complexities, whereas short-read approaches struggle to resolve large repetitive regions

"The Sanger median per-base error rate was 0.4%, approximately a 10-fold higher rate than our Nanopore assembly approach"

From Fig.1. Top: Proportion of the plasmid covered by nanopore-based assemblies (orange) and Sanger sequencing (blue). Bottom: the median per-base error rate is lower for nanopore-based assemblies (orange) compared to Sanger (blue).

Emiliani, Francesco E., Ian Hsu, and Aaron McKenna. "Multiplexed Assembly and Annotation of Synthetic Biology Constructs Using Long-Read Nanopore Sequencing." ACS Synthetic Biology (2022).

Example clone validation report in EPI2ME Labs

QC, reconstruction, and annotation of complete plasmids

•••	÷	Q Search wo	rkflows and analyses			
= quirky	y_austin • Completed			Overview L	ogs Report	Viewer
J 2	Sample: barcode	05				
	Read length distribution.	5 5 0000 10000 40000 0000 30000 40000 01 Length / bases	CloDF13 ori CloDF13 ori CloDF1	or csgG 1 500 tonB ter 1000 tonB ter 1500 tonB ter KanR kanMX	omoter minator oter nitron	
*	Read quality score Mean: 13. Median: 14 5 10 5 10	15 20	↔ ↔ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩			

10 v entries per pa	age	Search		
Sample	pass/failed reason	Length		
barcode01	Completed successfully	3097		
barcode02	Completed successfully	3097		
barcode03	Completed successfully	3097		
barcode04	Completed successfully	7922		
barcode05	Completed successfully	3037		
barcode06	Completed successfully	10674		
barcode07	Completed successfully	10674		
barcode08	Completed successfully	10674		
barcode09	Completed successfully	10674		
barcode10	Completed successfully	6280		

Insert sequences

This table shows which primers were found in the consensus sequence of each sample and where the inserts were found.

Sample	^ start	^ end	^ primer	strand	Insert length
barcode01	2726	818	pRham	-	1189
barcode02	2737	829	pRham	-	1189
barcode03	991	2180	pRham	-	1189
barcode05	2603	695	pRham	-	1129
barcode06	4111	615	T7	-	7178
barcode07	5142	1646	T7	-	7178
barcode08	2352	9530	T7	+	7178
barcode09	5134	1638	T7	-	7178
barcode10	2345	5131	T7	+	2786

rhaB promoter	snapgene	100.0%	100.0%	promoter of the E. coli rhaBAD operon, conferring tight induction with L-rhamnose and repression with D-glucose in the presence of RhaR and RhaS (Giacalone et al., 2006)	699	818	119	-1
cat promoter	snapgene	100.0%	100.0%	promoter of the E. coli cat gene encoding chloramphenicol acetyltransferase	914	1005	91	1
KanR	snapgene	99.4%	100.0%	aminoglycoside phosphotransferase; aph(3')- la; confers resistance to kanamycin in bacteria or G418 (Geneticin®) in eukaryotes	1005	1821	816	1
CloDF13 ori	snapgene	100.0%	92.3%	Plasmids containing the CloDF13 (CDF) origin of replication can be propagated in E. coli cells that contain additional plasmids with compatible origins.	1949	2631	682	1
T7 terminator	snapgene	100.0%	100.0%	transcription terminator for bacteriophage T7 RNA polymerase	2764	2812	48	-1

© 2024 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

Full-length 16S microbial identification

Why implement nanopore sequencing for 16S analysis?

Full-length 16S rRNA sequencing improves taxonomic resolution of microbial communities

Key features	Sanger	Short-read	Oxford Nanopore
Read length	~500 bp	~150 – 300 bp	~1,500 bp
Resolves polymicrobial samples	\bigotimes	\bigcirc	\bigcirc
High taxonomic resolution ¹	\bigotimes	\bigotimes	\bigcirc
Rapid library preparation	\bigotimes	\bigotimes	\bigcirc
Real-time sequencing	\bigotimes	\bigotimes	\odot

1. Zhang, et al. "The newest Oxford Nanopore R10. 4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling." Applied and Environ Microbio 89.10 (2023): e00605-23.

Case study: Oxford Nanopore 16S sequencing with Q20+ chemistry

Accurate full-length 16S sequencing enables species-level profiling for environmental microbiota

Authors assess the latest Q20+ chemistry for 16S experiments, generating raw read accuracy of ~99%

Study highlighted that both Oxford Nanopore and an alternative long-read platform revealed similar microbial profiles, while short read sequencing had limited resolution for species-level identification

"Our findings show that the ONT R10.4.1 flowcell for full-length 16S **enabled species-level taxonomic identification for environmental samples**" The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling

From Fig. 2: Classification results on species levels with PacBio ('PB', left), Oxford Nanopore ('R10.4.1', middle), and short-reads ('NovaSeq', right) compared to abundance of sample ('S1'). 'Other' includes unclassified.

Zhang et al. "The newest Oxford Nanopore R10. 4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling." Applied and Environ Microbio 89.10 (2023): e00605-23.

Bacterial isolate whole genome sequencing and antimicrobial resistance profiling

Generating closed, high-quality bacterial genome and plasmid assemblies

Short-read genome assembly Nanopore genome assembly Most bacterial genome assemblies produced with short-read sequencing technologies are fragmented and incomplete¹ Chromosome Nanopore sequencing improves microbial genome assemblies, with the ability to: Resistance gene Span repeat-rich sequences (characteristic of Resistance gene AMR genes) and structural variants Plasmids Determine which genes are on plasmids and which are on the chromosome² Complete bacterial genome Complete bacterial genome Distinguish bacterial from plasmid transmission in healthcare settings to target interventions **Resolve plasmids Resolve plasmids** Locate AMR genes Locate AMR genes Understand mechanisms and drivers of antimicrobial resistance for outbreak investigation

1. Koren and Phillippy. "One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly." Current opinion in microbiology 23 (2015): 110-120. 2. Figure from Dr. Kimberlee Musser, Wadsworth Center, NYSDOH, <u>'Improving bacterial disease public health testing with nanopore sequencing' presented at NCM 2023</u>

Updated basecalling models boost accuracy further in bacterial genomes

Bacterial genomes contain different types of DNA methylation, such as 6mA, 4mC, 5mC

>) New ONT basecallers have been trained on representative microbial samples, improving consensus accuracies further

1. Figure adapted from Crits-Christoph, et al. "MicrobeMod: A computational toolkit for identifying prokaryotic methylation and restriction-modification with nanopore sequencing." bioRxiv (2023)

Community results: benchmarking nanopore-only bacterial genome accuracy

> Dr. Ryan Wick, Bioinformatician at the Doherty Institute, benchmarked bacterial genome accuracy using recently updated basecalling models

>> Nanopore-only genome assemblies were compared to reference genomes

Findings indicate that latest basecalling model yields large improvement over previous models in bacterial genome consensus accuracy

"Biggest improvement I've seen in a while! Most of these ONT-only bacterial genomes are now >Q60"

View the full blog post at: https://rrwick.github.io/2023/12/18/ont-only-accuracy-update.html

It hasn't been long since I last quantified @nanopore accuracy, but the release of Dorado v0.5.0 demanded another test: rrwick.github.io/2023/12/18/ont...

Biggest improvement I've seen in a while! Most of these ONT-only bacterial genomes are now >Q60 😯

Genome	Q score
Campylobacter jejuni	Q55.5
Campylobacter lari	Q49.2
Escherichia coli	Q67.2
Listeria ivanovii	Q57.7
Listeria monocytogenes	Q∞
Listeria welshimeri	Q64.5
Salmonella enterica	Q62.0
Vibrio cholerae	Q63.2
Vibrio parahaemolyticus	Q64.1
Average	Q59.3

. . .

"Pathogen-agnostic" metagenomics

"Pathogen-agnostic" metagenomics

Nanopore sequencing is paving the way for rapid, unbiased pathogen surveillance methods

Today, pathogen surveillance strategies typically rely on retrospective investigations targeting known or suspected pathogens Going forward, the field aims to move towards more agnostic sequencing methods for broad, real-time pathogen monitoring

Metagenomics

The analysis of all genetic material present within a sample enables unbiased microbial characterisation

Standard approaches for identifying microbes, such as PCR, typically rely on targeting a limited number of specific organisms

However, metagenomic approaches sequence all genetic material in a sample which can contain many different microbes, enabling users to:

Detect known and unknown viruses, bacteria and fungi in a 'hypothesis-free' manner Detect novel variants of known pathogens that escape routine detection methods

Extract virulence and resistance information in the same assay

Deliver rapid results in situations where an urgent public health response may be required

New infections with significant public health impact continue to emerge, necessitating fast and comprehensive approaches for surveillance to detect rare, novel or emerging pathogens

Lie et al. (2022) reconstructed reference-quality genomes from complex metagenomes using nanopore-only long reads

In complex activated sludge (AS) samples, **275 MAGs were** reconstructed with median completeness of 90%

Median N50 of MAGs was 735 Kb, which was **44 – 86X** improvement compared to short-read-based MAGs

Median contig number in each MAG was 9, indicating long reads greatly closed gaps, obtained near-complete genomes

	Short-reaus	Naliopore
Contigs N50 (Kb)	3.4	103.9
No. of HQ-MAGs	8	94
Median contig count per MAG	456	9
Median N50/MAG (Kb)	9	735

Liu et al. "Nanopore long-read-only metagenomics enables complete and high-quality genome reconstruction from mock and complex metagenomes." Microbiome 10.1 (2022): 209.

04

Applications: Whole Genome Sequencing

More comprehensive genomic insights

© 2022 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

34

Nanopore technology was used to assemble the largest animal genome to date, 30% larger than the previous assembly record of axolotl salamander

S To overcome the challenges to sequence and assemble the even larger genomes of lungfish we used long and ultra-long read Nanopore technology

Meyer et al. Nature. DOI: https://doi.org/10.1038/s41586-021-03198-8 (2021)

Oxford Nanopore Technologies, the Wheel icon, and PromethION are registered trademarks of Oxford Nanopore Technologies in various countries. © 2021 Oxford Nanopore Technologies. All rights reserved. Oxford Nanopore Technologies products are currently for research use only. IG_1095(EN)_V1_26Jan21

Ultra-long nanopore reads central to completing the human genome

Complete genome assembly of human haploid cell line CHM13

- Repeats (e.g. ribosomal DNA units, centromeric satellites, segmental duplications) comprise majority of gaps in GRCh38 reference
- Repetitive regions unresolvable with other technologies
- Ultra-long nanopore reads required for genome completion
 - E.g. 450 kb single read, spanning ribosomal DNA array on chr15
- Implications for genetic diseases

'Compared with GRCh38, T2T-CHM13 is a more complete, accurate, and representative reference for both short- and long-read variant calling across human samples of all ancestries' Nurk et al.. 2022

Nurk et al., Science. https://doi.org/10.1126/science.abj6987 (2022)

36

© 2023 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

Nanopore sequencing of human genomes provides a comprehensive view of haplotyperesolved variation and methylation

Efficient and scalable wet-lab and computational protocol for 4,000 samples

- Short-read sequencing methods struggle to detect structural variants (SVs) in repetitive regions
- Here, Kolmogorov et al. share an end-to-end, nanopore-based protocol which could be 'a genuine alternative to short-reads for large-scale... projects', with lower cost and greater throughput than alternative long-read platforms

'Using a single PromethION Flow Cell, we can detect SNPs with F1-score better than...short-read sequencing'

Kolmogorov et al., 2023

37

Kolmogorov et al. *bioRxiv* <u>https://doi.org/10.1101/2023.01.12.523790</u> (2023)

© 2023 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

Figure 1. Single flow cell Oxford Nanopore Technologies (ONT) sequencing protocol Adapted from: https://doi.org/10.1101/2023.01.12.523790

CONFIDENTIAL

05

Applications: Adaptive Sampling

Adaptive sampling: targeted sequencing included

No additional sample prep needed

- Software-controlled enrichment/depletion of targets
- Real-time, any target number
- Enrich for large regions of interest or remove contamination
- You only need
 - Reference file (FASTA format)
 - Optional: coordinates for enrichment/depletion (bed format)

More at nanoporetech.com/resource-centre/adaptive-sampling-oxford-nanopore

Adaptive sampling: accept or reject strands based on their sequence

Case study: AS host depletion for pathogen and antimicrobial resistance detection

Nanopore Adaptive Sampling (AS) host depletion workflow provides 100% sensitivity, with 4.5-hour turnaround

- Traditional metagenomic sequencing approaches face the problem of high host:microbial DNA ratios, lowering the resolution of detection
- Here, adaptive sampling-mediated host depletion in metagenomic samples provided:
 - 8-fold enrichment in microbial sequencing yield
 - Real-time bacterial species identification and antimicrobial resistance (AMR) gene prediction
 - 100% specificity & sensitivity for pathogen detection
 - Turnaround time just 4.5 h

Figure: Cumulative depth of coverage over time for 7 microorganisms: *S. marcescens* (SMA), *E. faecalis* (EFA), *S. aureus* (SA), *P. aeruginosa* (PAO1), *K. pneumoniae* (KPN), *A. baumannii* (AB), and *E. coli*, with adaptive sampling and nanopore sequencing without adaptivesampling-mediated depletion. Sufficient depth (i.e., >30× coverage) achieved after just 4.5 h of sequencing with adaptive sampling.

06

Applications: Direct RNA Sequencing

cDNA synthesis-based RNA sequencing cannot reveal all

Customers often highlight common challenges...

42

Direct, cDNA-free RNA sequencing reveals more biology

Uncover previously unseen biological insights

Reveal missing biology through...

RNA base modification detection

Highly accurate 3' poly(A) tail insights

Complete isoform mapping

Transcript quantitation

43

Anyone, anywhere - Why wait?

Richer insights: Highly-accurate, native RNA data

Faster, real-time results from near-sample without batching

Accessible and affordable, with scalability for more use cases

07

Single-cell RNA Sequencing

Obtain full-length transcripts from single cells with nanopore technology

Compatible with the most widely used single-cell sample preparation approach

Figure: Diagram of 10x + Nanopore single-cell preparation protocol. View poster: nanoporetech.com/resource-centre.

- Generate full-length cDNA from 10x Genomics libraries by skipping the fragmentation step required with short-read approaches
- Prepare full-length cDNA for nanopore sequencing
- Typical output:
 - ~100 M reads per PromethION Flow Cell
 - ~80 M cell & UMI assigned reads

^{© 2023} Oxford Nanopore Technologies plc.

⁴⁵ Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

Full-length isoforms can reveal isoform switching during cell development

Many isoform switch events cannot be identified using short-read approaches

Figure: Differential isoform expression identified in mouse brain using single-cell nanopore data: full length isoforms obtained from nanopore data (left); Clta 204 is predominantly expressed in mature cells (middle); Clta 206 is predominantly expressed in radial glial precursor cells (right). Clta = Clathrin Light Chain A.

- 76 genes in mouse brain found to have differentially expressed isoforms between cell types
- Example: Clathrin Light Chain A (CLTA) isoforms 204 and 206 undergo isoform switch
- Finely tunes protein function for the intricacies of neuronal, and therefore brain, development

Lebrigand et al. (2020). Nature Communications. https://doi.org/10.1038/s41467-020-17800-6

© 2023 Oxford Nanopore Technologies plc.
 Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

Measure isoform expression in spatial context

- 10x Visium spatial libraries use the same barcodes as 10x single-cell libraries
- Demux of Visium libraries is supported by sockeye
- Long reads enable detection of isoforms, SNPs, fusions, etc from spatial libraries.
- In the published example (right) the mouse midbrain (red circle) predominantly expresses isoform Snap25-201 and not Snap25-202. These phenomenon are invisible to short reads in most cases

Figure adapted from Lebrigand et al. (2020). bioRxiv. https://doi.org/10.1101/2020.08.24.252296

© 2023 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

47

Isoform-level single-cell nanopore sequencing in cancer research

Use nanopore data alone for simultaneous analysis of genotype and phenotype

'The discovery of cancer-specific genes using gene expression levels may only be revealing the tip of [the] iceberg of transcriptional diversities in cancer'

Shiau et al, 2023

- Nanopore-only pipeline:
 - scNanoGPS^{*} analysis toolkit deconvolutes nanopore reads into single cells and single molecules, without short-read guidance
 - Simultaneous identification of cell-typespecific isoforms and gene expression profiles (phenotypes) and mutations (genotypes)

48

niau et al. *oRxiv.* ttps://doi.org/10.1101/2023.01.24.525264 023)

Figure: Isoforms of gene *PPDPFL* expressed in normal cells vs tumour single cells, revealing no significant differences at the level of gene expression, but significant differences in the underlying isoform breakdown (Adapted from: Shiau *et al.* 2023).

*single cell Nanopore sequencing analysis of Genotypes and Phenotypes Simultaneously

Oxford Nanopore solution for 10x Genomics single-cell and spatial sequencing

© 2023 Oxford Nanopore Technologies plc. Oxford Nanopore Technologies products are not intended for use for health assessment or to diagnose, treat, mitigate, cure, or prevent any disease or condition.

49

B

,

Thank you